Лекция 12. CI/CD и эксплуатация: пайплайны сборки, тесты, деплой, rollback
Цель лекции: понять, как организовать промышленный цикл доставки изменений в smart‑инфраструктуре (edge/on‑premise/cloud): от коммита до развертывания, с контролем качества, безопасностью, наблюдаемостью и безопасным откатом.
1. Что такое CI и CD
CI (Continuous Integration) — непрерывная интеграция: частые изменения в коде автоматически собираются и тестируются.
CD (Continuous Delivery/Deployment) — непрерывная доставка/развертывание: изменения автоматически подготавливаются к релизу или автоматически выкатываются в прод.

Цель: уменьшить риск релизов, сократить время доставки функций и исправлений, повысить повторяемость и предсказуемость эксплуатации.
2. Типовой пайплайн: от коммита до продакшна
Упрощённая цепочка:
1) Commit/PR → code review
2) Build → сборка артефактов (binary/контейнер/firmware)
3) Unit tests → быстрые тесты логики
4) Static checks → линтеры, форматирование, SAST
5) Integration tests → сервисы вместе (контейнеры, тестовые БД)
6) Security scans → зависимости, контейнер, секреты
7) Package/Publish → registry (Docker registry, artifact repo)
8) Deploy to staging → smoke tests
9) Approve/Policy gates → ручной/авто контроль
10) Deploy to production → canary/blue-green/rolling
11) Monitor → метрики/логи/трейсы
12) Rollback/rollforward → откат или быстрый фикс
3. Артефакты: что мы “доставляем”
В smart‑инфраструктуре артефакты бывают разные:
• контейнеры (microservices, обработчики телеметрии)
• конфигурации (Infrastructure as Code)
• прошивки (edge‑шлюзы, контроллеры)
• модели ML (версии моделей, калибровки, пороги)
• схемы БД/миграции

Важный принцип: артефакт должен быть неизменяемым (immutable). То, что протестировано в staging, должно быть тем же, что уходит в production.
4. Тестирование в CI: уровни
Уровни тестов:
1) Unit tests — проверка функций/классов; должны быть быстрыми.
2) Integration tests — проверка взаимодействия сервисов и внешних зависимостей.
3) Contract tests — API‑контракты (сервис A ожидает формат сервиса B).
4) E2E tests — сценарии “как пользователь”.
5) Performance tests — нагрузка, latency, throughput.
6) Chaos/failover tests — проверка устойчивости (в безопасной среде).

Правило: чем ближе к продакшну, тем тесты дороже и реже; в CI важны быстрые проверки, а тяжелые — по расписанию или перед релизом.
5. Деплой: стратегии выкатывания
Основные стратегии:
• Rolling update — постепенная замена реплик.
• Blue/Green — две среды, переключение трафика.
• Canary — небольшой процент трафика на новую версию, затем расширение.
• Shadow — новая версия получает копию трафика, но не отвечает пользователю.

Для smart‑систем особенно полезны canary и blue/green, чтобы снизить риск отказа центральных компонентов (брокер/обработка/БД/дашборды).
6. Rollback и rollforward
Rollback — откат на предыдущую стабильную версию.
Rollforward — быстрый выпуск исправления поверх проблемной версии.

Когда rollback сложен:
• изменения схемы БД без обратимых миграций
• изменения форматов сообщений без обратной совместимости

Практики для безопасного отката:
• backward compatibility (старое и новое должны сосуществовать)
• обратимые миграции (или “expand/contract” подход)
• версионирование API/событий
• feature flags (включение функций без релиза)
7. Конфигурация и инфраструктура как код (IaC)
В эксплуатации конфигурация — источник многих инцидентов.

Практики:
• хранить конфигурации в Git (GitOps)
• применять шаблоны и валидацию (lint/validate)
• разделять секреты и конфигурации
• иметь окружения: dev/stage/prod с явными параметрами

IaC (Terraform/Ansible/Helm/Kustomize) делает инфраструктуру воспроизводимой и позволяет откатывать изменения как код.
8. CI/CD для edge и прошивок
Edge отличается от облака:
• устройства часто офлайн или с плохим каналом
• обновления должны быть безопасными и устойчивыми к обрыву
• нужен контроль версий и групп устройств

Практики OTA:
• подпись прошивки/контейнера
• staged rollout по группам устройств
• canary‑группа “первых” устройств
• проверка после установки (health checks)
• возможность rollback
• ограничение скорости обновлений (чтобы не “убить” сеть)
9. Наблюдаемость релизов и SLO
CI/CD без наблюдаемости не работает: после выката нужно быстро понять, что стало хуже.

Ключевые сигналы релиза:
• error rate, latency, saturation
• количество timeouts/reties
• consumer lag (для стриминга)
• рост ошибок аутентификации
• отклонения телеметрии/аномалии

SLO помогает формализовать “что значит нормально”. Canary‑выкат обычно включает автоматическую проверку SLO‑метрик.
10. Безопасность в CI/CD (DevSecOps)
Нужно защищать не только прод, но и цепочку поставки:
• секреты: запрет ключей в репозитории, secret scanning
• зависимости: проверка уязвимостей (SCA)
• контейнеры: сканирование образов
• SAST/DAST (статический/динамический анализ)
• подпись артефактов и проверка целостности
• ограничения прав CI‑раннеров (least privilege)

Идея: “что попало в pipeline — может попасть в прод”, значит pipeline — критическая зона.
11. Практический пример пайплайна (словами)
Пример для сервиса обработки телеметрии:
• PR: линтер + unit tests + SAST
• Merge: build docker image → scan → push registry → integration tests в docker-compose
• Staging: deploy → smoke tests → нагрузочный прогон малого уровня
• Prod: canary 5% → проверка SLO (latency<200ms, error<1%) → расширение до 100%
• При нарушении SLO: автоматический rollback на прошлый tag

Для edge‑контейнера/прошивки: staged rollout по группам устройств + health checks + rollback.
12. Итоги
• CI/CD снижает риск релизов за счёт автоматизации и повторяемости.
• Тесты строятся слоями: быстрые в CI, тяжёлые — ближе к релизу.
• Стратегии выката (canary/blue‑green) и наблюдаемость критичны для smart‑платформ.
• Rollback требует обратной совместимости, аккуратных миграций и версионирования.
• Безопасность pipeline (DevSecOps) — обязательная часть эксплуатации.
Самопроверка (10 вопросов)
• Чем отличается Continuous Delivery от Continuous Deployment?
• Почему артефакты должны быть immutable?
• Какие типы тестов наиболее важны на этапе PR?
• В чём преимущества canary‑деплоя для smart‑платформы?
• Почему rollback может быть невозможен после миграции БД?
• Как feature flags помогают эксплуатации?
• Что такое GitOps и какие плюсы он даёт?
• Какие особенности CI/CD появляются для edge/OTA обновлений?
• Какие метрики релиза нужно мониторить в первые минуты после выката?
• Что включает DevSecOps и почему это важно?
